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Abstract

Microspheres have gained much attention from pharmaceutical and medical industry due to the excellent biodegradable and
long controlled-release characteristics. However, the drug release behavior of microspheres is influenced by complicated
formulation and manufacturing factors. The traditional formulation development of microspheres is intractable and inefficient
by the experimentally trial-and-error methods. This research aims to build a prediction model to accelerate microspheres
product development for small-molecule drugs by machine learning (ML) techniques. Two hundred eighty-six microsphere
formulations with small-molecule drugs were collected from the publications and pharmaceutical company, including the
dissolution temperature at both 37 °C and 45 °C. After the comparison of fourteen ML approaches, the consensus model
achieved accurate predictions for the validation set at 37 °C and 45 ‘C (R>=0.880 vs. R>=0.958), indicating the good per-
formance to predict the in vitro drug release profiles at both 37 °C and 45 °C. Meanwhile, the models revealed the feature
importance of formulations, which offered meaningful insights to the microspheres development. Experiments of microsphere
formulations further validated the accuracy of the consensus model. Furthermore, molecular dynamics (MD) simulation
provided a microscopic view of the preparation process of microspheres. In conclusion, the prediction model of microsphere
formulations for small-molecule drugs was successfully built with high accuracy, which is able to accelerate microspheres
product development and promote the quality control of microspheres for the pharmaceutical industry.
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Introduction

Microsphere products have gained broad attention from
the pharmaceutical and medical industry due to the advan-
tage of biodegradability, biocompatibility, and tunability
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[1]. With the large amount of active pharmaceutical ingre-
dients (APIs) encapsulated in biodegradable polymer
matrix, such as polylactic acid (PLA) and poly (lactic-co-
glycolic acid) (PLGA), microspheres can achieve extended
release for weeks or even months, so as to dramatically
reduce administration frequency [2, 3]. This extraordi-
nary advantage significantly relieves patient suffering
and effectively improves treatment adherence, especially
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for some non-alternative demands, e.g., psychiatric med-
ication, diabetes, and cancer [4, 5]. However, since the
advent of microspheres manufacture technology 40 years
ago, only several microsphere formulations have been suc-
cessfully developed from bench to bedside (Table 1). Their
application is hindered by the complicated formulation
and preparation process.

The microspheres depend on numerous formulation
and process factors, including API and carrier material
properties, solvent, temperature, and stirring speed et al.
[6, 7]. The release mechanism of microspheres includes
drug diffusion, polymer degradation, and erosion. For
small hydrophobic drugs, they can diffuse through the
polymer matrix and also be released by erosion, whereas
the peptide drugs mainly diffuse through the pores and the
diffusion rate is determined by the degree of erosion [8].
In order to obtain the desired release profiles, numerous
formulation combinations should be considered. Moreo-
ver, the formulation and process parameters need signifi-
cant optimization from the laboratory-scale test to large-
scale manufacture. Currently, the in vitro release testing
at 37 ‘C applied in microsphere formulation screen-
ing may take up to several months. In order to reduce
release time, the FDA regulatory science program [9]
and EUFEPS workshop [10] have mentioned the elevated
temperature method, which significantly benefits the pre-
liminarily formulation space searching. However, given
the high-dimensional space of microsphere formulation
to explore, the traditional R&D process on the basis of
trial-and-error experimental approaches could take years
to go, which is still doomed to be laborious, material

and time-consuming. Moreover, even some commercial
products are still not the best fit for purpose, further far
from the optimal setting [11]. Thus, the pharmaceutical
industry requires a more efficient approach to accelerate
the microsphere formulation development.

Recently, machine learning (ML) techniques have been
integrated in different aspects of our life, such as auto-
mated driving, medical diagnosis, and drug discovery
and development [12]. The unique advantage of ML is to
explore the implicit knowledge and make predictions for
complex issues, which could reduce abundant experiment
work, and efficiently promote development process [12].
In addition to drug discovery, ML has also been introduced
in pharmaceutical formulation development, such as the
prediction of dissolution profile and physical stability of
solid dispersions [13, 14], size and polydispersity index
of drug nanocrystals [15], lipid nanoparticle for mRNA
vaccine [16], self-emulsifying drug delivery systems [17],
and binary cyclodextrin complexes [18]. ML approaches
were also applied in microsphere formulation. Szlekand
et al. built artificial neural network (ANN) models with 68
formulation data to fit the relationship between formula-
tion and protein drug dissolution [19, 20]. Rodrigues de
Azevedo et al. analyzed the impact of physicochemical
factors on the initial drug release from PLGA(-PEG) sys-
tems by using partial least squares regression and decision
tree (DT) on 152 experimental data [21]. To investigate
potential combinations of polymer and drug, Bannigan
et al. applied 4 ANN-structures on 181 formulation data
of both long-acting injectable implants and microspheres
[22]. These examples showed the feasibility of ML in

Table 1 Summary of drug-loaded microsphere products approved by the U.S. Food and Drug Administration (FDA)

Drug product  Active ingredient Route of administration Time range Indications Approval date
Decapeptyl Triptorelin acetate Intramuscular injection 1, 3 months Prostate cancer; endometriosis; 1986
uterine fibroids
Lurpon/Enantone Leuprolide acetate Intramuscular injection 1, 3, 4, 6 months Prostate cancer; breast cancer 1995
Risperdal Consta Risperidone Intramuscular injection 2 weeks Schizophrenia; bipolar I disorder 1997
Sandotatin LAR  Octreotide acetate Subcutaneous injection 4 weeks Severe diarrhea associated with 1998
metastatic carcinoid tumors or
VIP-secreting tumors
Nutropin Somatropin Intramuscular injection 1 month Growth failure 1999
Trelstar Triptorelin pamoate Intramuscular injection 4 weeks Advanced prostate cancer 2000
Arestin Minocycline Peridontal injection 1 week Periodontitis 2001
Vivitrol Naltrexone Intramuscular injection 2 weeks Alcohol dependence 2006
Bydureon Exenatide Intramuscular injection 1 week Type 2 diabetes 2012
Signifor LAR Pasireotide pamoate Intramuscular injection 1 month Acromegaly 2014
Zilretta Triamcinolone acetonide Intrarticular injection 3 months Osteoarthritis pain of the knee 2017
Bydureon BCise Exenatide Intramuscular injection 1 week Type 2 diabetes 2017
Triptodur kit Triptorelin pamoate Intramuscular injection 24 weeks Central precocious puberty 2017
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microsphere formulations. However, previous studies only
did the preliminarily trial with limited data from the labo-
ratory scale. A practical model for the industrial scale is
still under urgent demand.

This research aimed to accelerate microspheres product
development for the pharmaceutical industry by ML tech-
niques. Two hundred eighty-six microsphere formulations
with small-molecule drugs were collected from both pub-
lications and the pharmaceutical company, covering the
dissolution temperature at 37 C and 45 °C. Fourteen ML
algorithms were compared for predicting the in vitro drug
release profiles and subsequently validated by the experi-
ments. Furthermore, molecular dynamic simulation was
applied for investigating molecular mechanism of micro-
sphere formation.

Methods
Dataset construction

Two hundred eighty-six PLGA microsphere formulations
for small-molecule drugs were obtained from publications
(32 formulations) and Livzon Microsphere Ltd. (254 for-
mulations). This dataset included 12 small-molecule drugs
and 3182 release time points. Publications were collected
from the SCOPUS database, where PLGA microspheres
for small-molecule drugs mentioned were prepared by
solvent evaporation/extraction methods. The words or
phrases, “microspheres”, “microparticle”, “PLGA”, “poly
(lactic-co-glycolic acid)”, and “sustained release” were
used as keywords for searching articles in the database.
Since release profiles at high temperature correlated well
with those at 37 °C and were in large amounts, both the
data of 37 °C and 45 °C were included in this dataset.
Information about drug release behavior was collected and
described as 35 features, which comprehensively consid-
ered the formulation parameters, processing conditions,
microspheres characteristics, and in vitro dissolution con-
ditions. Eleven physicochemical properties of the drugs

Table 2 Summary of input features in the dataset

were used as input features, which included molecular
weight, XLogP3, hydrogen bond donor count, hydrogen
bond acceptor count, rotatable bond count, topological
polar surface area, heavy atom count, complexity, melt-
ing point, logS, and logP. The input features were sum-
marized in Table 2, and cumulative drug release was the
predictive target.

Before establishing prediction models on the dataset, data
pre-processing was performed. Drugs were characterized as
11 physicochemical properties derived from the Pubchem
database, and where logP and logS not given were calcu-
lated by ALOGPS [23]. For categorical features, each label
was assigned as an integer. Extremely uneven distributed
features were processed by taking the logarithm of the fea-
tures to base 10. Missing values were dealt with either the
statistical mean or the mode based on pharmaceutical knowl-
edge. For neural networks, support vector machine (SVM),
and k-nearest neighbors (kNN), the features were first stand-
ardized before being fed into the models.

Dataset splitting strategy

In general, the whole dataset was evenly split into the train-
ing set (70%) and the validation set (30%) by the group ran-
dom sampling method. The training set was employed for
training models and the validation set was used for tuning
hyperparameters. Since a drug dissolution profile consists
of multiple time points and corresponds to one formulation,
all release points of the same profile would share the same
formulation information. Here, all release points were firstly
grouped into formulations and numbered by formulation
index. Secondly, the dataset was then divided into training
set and validation set by formulation index. The group-based
split approach guaranteed that the whole release profile was
divided into one subset and additionally, the similar training
set and validation set distribution were obtained (Fig. 1).
Group 10-tenfold cross validation (CV) was applied
for model performance evaluation, which ensured that the
release points from the same formulation were not divided

Categories Input features

Formulation

Physicochemical properties of drug (molecular weight, XLogP3, hydrogen bond donor count, hydrogen bond

acceptor count, rotatable bond count, topological polar surface area, heavy atom count, complexity, melting
point, logS, logP), concentration of drug, PLGA and PVA, and type and volume of solvent.

Processing condition
process, and stirring speed.

Microspheres characteristics

In vitro dissolution condition
time.

Emulsification device, solvent elimination method, temperature during emulsification and solvent elimination

Drug loading, encapsulation efficiency, particle size, and particle surface type.

Dissolution temperature, type and pH of dissolution medium, surfactant in dissolution medium, dose, and

PLGA poly (lactic-co-glycolic acid), PVA polyvinyl alcohol
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Fig. 1 Distribution of cumulative drug release in the training set and
the validation set

into different subsets. In group 10-fold CV, the dataset was
split into 10 subsets based on formulation, and for each fold,
9 subsets were served as the training data and the rest was for
evaluating performance, this process iterated for 10 times.

Evaluation criteria

Mean absolute error (MAE), mean squared error (MSE),
root mean squared error (RMSE), and coefficient of deter-
mination (R?) were applied for evaluating the model per-
formance. They are commonly used in ML, where MAE,
MSE, and RMSE evaluate the distance between individual
true and predicted values, and R? evaluates the correlation
between them. The evaluation criteria were calculated by the
following equations:

RN
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where n was the number of samples, y; was the real value
for time point i, and 3; was the prediction, and y was the
average value.

Furthermore, in experimental validation, to evaluate the
model performance on the whole profile, we specified that
predictions with an average prediction error no more than

RP=1-
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10% for all time points are identified as successful. This
was drawn from the requirement in pharmaceutics that a
10% error is considered acceptable [24—26]. Similar factor
(f,) was introduced to provide a pharmaceutical indication:

n’ AN2 -0
Zi:l(yi =)

n

f> =50 xlog4 100x| 1 +

where 1’ was the number of time points in a curve, y; was the
experimental value for time point i, and y; was the predicted
value. According to the FDA recommendation, only the first
time point after 85% dissolution is used in the f, calculation
[27]. This is a more rigorous approach than averaging the
variance of all time points, because the points after 85% dis-
solution are generally plateau with small variance and high
similarity. Therefore, we only added the first time point after
85% release in the f, calculation for the good pharmaceutical
evaluation.

Machine learning models establishment

Fourteen ML approaches were used to develop regression
models for predicting the microspheres in vitro cumu-
lative drug release, including XGBoost, random forest
(RF), LightGBM, residual neural network (ResNet), deep
neural network (DNN), DT, artificial neural network
(ANN), artificial neural network-multilayer perceptron
(ANN-MLP), kNN, SVM, ridge regression, partial least
squares regression (PLS), lasso regression, and multiple
linear regression (MLR). These algorithms covered con-
ventional kernel-based and gradient-based ML approaches
previously dominated in pharmaceutics, shallow models
and deep learning, single DT and tree-based ensemble
learning, and linear and non-linear models. The neural
networks, the LightGBM model, the XGBoost model,
and other ML models were established by the TensorFlow
package (version 2.3.1) [28, 29], the LightGBM package
(version 3.2.1), the XGBoost package (version 1.5.0),
and the Scikit-Learn package (version 0.24.2) in Python,
respectively.

Furthermore, the optimal hyperparameters were
searched on the validation set by three searching methods,
grid search, random search, and manual search. Specifi-
cally, DT, kNN, and PLS employed grid search, XGBoost,
LightGBM, RF, and SVM utilized random search. Due to
the large hyperparameter space of neural networks, grid
search and random search may lead to overfitting or under-
fitting problems, for which manual search was conducted
for neural networks. Lasso regression, ridge regression,
and MLR had no hyperparameters. The hyperparameter
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configurations of ML algorithms were shown in the
Table 3, and the values were given in brackets.

Consensus modeling

In order to achieve better prediction capability and robustness
than individual models, we have further constructed the con-
sensus model. Individual models can result in different model
uncertainty due to different hypothesis adopted. Consensus
model is able to reduce the prediction error by integrating
single models. Since the consensus model has combined dif-
ferent hypothesis, it can figure out the relationship between
input features and output variable more comprehensively than
one individual model [30]. By averaging the results of those
well-performed models, the consensus model is expected to
have good and also robust model performance.

Here, after comparing the performance of single
models, those with comparably good performance were
selected as sub-models to ensure the consensus model
possesses high predictive capability. All sub-models were
treated as equal contribution, in which their predictions
were averaged as the output of consensus model.

Table 3 Hyperparameter configurations of machine learning approaches

Experimental validation

To further validate the accuracy of prediction models,
20 external microsphere formulations were prepared to
further validate the accuracy of ML models. Risperi-
done, developed as the first microspheres product for
small-molecule drug, was selected as the model drug for
microspheres preparation by emulsion solvent evapora-
tion method. The combinations of formulation and pro-
cess parameters were listed in Table S1 in supplementary
material, and the preparation process and characterization
method were described as follows.

Materials

Risperidone was purchased from Jiangsu Nhwa Pharma-
ceutical Co., Ltd. (Jiangsu, China). PLGA, with a lactide/
glycolide ratio of 75:25, was provided by Evonik Indus-
tries (Shanghai, China). Polyvinyl alcohol (PVA) was
purchased from Mitsubishi Chemical (Tokyo, Japan).
Dichloromethane (DCM) was obtained from Sino Pharm
(Beijing, China). Polysorbate 20 was provided by Nanjing

Machine learning Hyperparameter configurations
algorithm

XGBoost The learning rate (0.00788); the number of trees (1188); the subsample ratio (0.817); the subsample ratio of columns
(0.869); the maximum depth of the trees (4)

RF The number of the maximum features (24); the number of the trees (555); the maximum depth of the trees (23); the
minimum number of the samples used to split (10); the minimum number of samples in a child leaf (5)

LightGBM The learning rate (0.00315); the number of trees (1104); the subsample ratio (0.302); the subsample ratio of columns
(0.853); maximum tree leaves for base learners (50)

ResNet The number of hidden layers (20); the number of neurons in each of the hidden layers (1024, 256, 128, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64); the learning rate (0.01); the optimization algorithm (Adam with §1, p2 of
0.9, 0.999); the learning rate decay (0.01); the epoch size (151); the 12 regularization coefficient lambda (0.16); the batch
size (500)

DNN The number of hidden layers (10); the number of neurons in each of the hidden layers (1024, 256, 128, 64, 64, 64, 64, 64,
64, 64); the learning rate (0.001); the optimization algorithm (Adam with p1, p2 of 0.9, 0.999); the learning rate decay
(0.02); the epoch size (120); the 12 regularization coefficient lambda (0.2); the batch size (500)

DT The maximum depth of the tree (15); the minimum number of the samples used to split (14); the minimum number of
samples in a leaf (6)

kNN The number of neighbors (4); weight function used in prediction (the standard Euclidean distance with uniform weights)

SVM The penalty parameter C (426.9); the y (0.14)

ANN The number of hidden layers (4); the number of neurons in each of the hidden layers (1024, 256, 128, 64); the learning rate
(0.001); the optimization algorithm (Adam with B1, B2 of 0.9, 0.999); the learning rate decay (0); the epoch size (600);
the 12 regularization coefficient lambda (0); the batch size (500)

ANN-MLP The number of hidden layers (1); the number of neurons in each of the hidden layers (1024); the learning rate (0.003);
the optimization algorithm (Adam with p1, B2 of 0.9, 0.999); the learning rate decay (0); the epoch size (200); the 12
regularization coefficient lambda (0); the batch size (500)

PLS The number of components (13)

Lasso regression \
Ridge regression  \
MLR \

IR TRl

;”” was used for separating different hyperparameters; “,” was for different components of a hyperparameter; “\” meant no hyperparameter
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Well Pharmaceutical Group Co., Ltd. (Nanjing, China).
The other chemicals or solvents were of reagent or ana-
lytical grade.

Microspheres preparation

Risperidone-loaded microspheres were prepared by
the emulsion solvent evaporation method as previously
described [31]. Briefly, risperidone and PLGA were dis-
solved completely in DCM. The organic solution was
emulsified in aqueous solution containing PVA by stir-
ring using a high-shear emulsifier. Emulsion was then
stirred at room temperature to evaporate DCM and
allowed microspheres formation. Solid microspheres
were harvested by microporous membrane. Collected

Entrapment Efficiency(%) =

Weight of encapsulated drug

risperidone completely. The aqueous solution was filtered
with 0.22 pm microporous membrane, and then quantified
by Agilent 1260 type HPLC equipped with Agilent G1314F
1260 VWD detector and Thermo Syncronis C18 chroma-
tographic column (150 mm X 4.6 mm, 5 pm). The mobile
phase formulated at 0.065 mol/L ammonium acetate buffer:
acetonitrile (70:30) flowed at 1.0 mL/min and column tem-
perature was 40 °C. Detection wavelength here was 275 nm.
Drug loading referred to the ratio of the encapsulated drug in
microspheres and microspheres weight. According to drug
loading, entrapment efficiency was calculated as the ratio
of content of drug encapsulated and drug content used in
microspheres preparation.

Weight of encapsulated drug

Drug Loading(%) = X 100%

Weight of microspheres

x 100%

Weight of drug used in preparation

microspheres were then washed and freeze-dried. The
batch size was ranged from 1.8 to 24 g.

Scanning electron microscope (SEM)

Scanning electron microscope (Pro, Phenom World, Eind-
hoven, The Netherlands) was employed to investigate the
microscopic morphology of microspheres. Risperidone-
loaded microspheres were placed and mounted on the
sample table. A thin gold layer was coated on the micro-
spheres by ion sputtering instrument (LJ-16, Yulong Tech-
nology, Beijing, China). Conductive microspheres were
then observed by SEM.

Size and size distribution

After uniform mixing, 30—60 mg microspheres were sam-
pling. The samples were dispersed in 5 ml ultrapure water
by sonicating. The size and size distribution of micro-
spheres were estimated by a laser size analyzer (MS2000,
Malvern Panalytical, Malvern, UK). Particle size was
described by D, Dy, and Dy, and size distribution was
evaluated by SPAN. SPAN is defined as (Dgyy -D;)/Ds,
where D, D5, and Dy, were the size that 10%, 50%, and
90% of microspheres were less than.

Entrapment efficiency and drug loading
A total of 2040 mg of microspheres were sampling after

uniform mixing, and the samples were dissolved in 20 ml
ammonium acetate buffer-acetonitrile solution to extract

@ Springer

In vitro release testing

In brief, 5 mg microspheres was dispersed in 50 ml HEPES
buffer solution (pH 7.4) containing polysorbate 20 in Erlen-
meyer flask at incubator. If not specified, the dissolution
temperature was set to 45 °C. At pre-determined time, 1 ml
solution was sampled, and equal fresh medium was added.
Sampling solution was filtered with 0.22 pm microporous
membrane before quantified by HPLC. Concentration of ris-
peridone at each sampling time was measured, and cumula-
tive release was determined.

Molecular dynamics simulation

In this part, the formation of microspheres was molecu-
lar dynamically visualized and analyzed to investigate the
microscopic interactions between drugs and excipients
which the experiments cannot reach. Firstly, all three-
dimensional molecules were constructed by Discovery
Studio Visualizer. The relevant topology and partial charge
were described by applying General AMBER force field
(GAFF) [32] and AM1-BCC method [33]. In consistence
with proportions in microspheres preparation, 21 risperidone
molecules, 4 PLGA fragment with eight units, 1725 DCM
molecules, and 20 PVA fragment with six units were used
in initial model preparation. Since the preparation process
involved the emulsification of oil phase in water phase, two
initial models, oil phase model and water phase model, were
built respectively. Risperidone, PLGA, DCM, and PVA mol-
ecules were randomly dispersed in two different vacuum
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boxes by Packmol software [34]. Initial models were loaded
in GAFF by using LEAP module. Specially, 10-A thickness
TIP3P water solution was added to initial structure of PVAs.

After the preparation, four simulations were performed
by using AMBER18 software. Firstly, the oil phase model
and water phase model were respectively conducted an
1 ns MD simulation to approximate the dispersion pro-
cess of PLGAs and risperidone in DCMs, and PVAs in
water solution. Subsequently, to simulate the oil-in-water
emulsification process, the simulated oil phase model
was immersed in simulated water phase model to con-
struct O/W system by using visual molecular dynamics
(VMD) software [35]. The constructed system was then
performed 10 ns simulation. Finally, the DCMs of the
last frame of the simulated O/W system extracted were
removed. This initial structure constructed was subse-
quently conducted 180 ns MD simulation to simulate
the solvent evaporation and microspheres solidification
processes.

Each of the simulation procedures mentioned above
included the following steps. Briefly, energy minimiza-
tion was performed to remove the irrational contacts of
atoms. Subsequently, the system was heated from 0 to
300 K in 40 ps and held for 160 ps. The coupling algo-
rithm of Langevin thermostat [36] and Berendsen barostat
[37] were used to hold the temperature at 300 K and pres-
sure at 1 atm, respectively. The MD simulation was per-
formed at 0.002 ps per step, and trajectory file was saved
every 10 ps. The simulation process was visualized by
VMD software and CPPTRAJ tool was used in subse-
quent analysis. Root-mean-square deviation (RMSD),
radius of gyration (Rg), solvent-accessible surface area
(SASA), and the number of hydrogen bonds were ana-
lyzed for evaluation.

0 Publication
BN Pharmaceutical company

m 37°C
H 45°C

Results
Data distribution in the dataset

In this study, a dataset for microspheres was collected from
the publication and the pharmaceutical company, consisting
of 12 small-molecule drugs, 286 microsphere formulations,
and 3182 release time points, where both 37 ‘C and 45 C
dissolution temperatures were considered. Specifically, as
shown in Fig. 2A, nearly 90% of data came from the pharma-
ceutical company. In terms of dissolution temperature, more
than two thirds of the data were at 45 “C and less than one
third were at 37 °C (Fig. 2B). Drug release testing at 37 °C
typically required a release time of about 35 days, which was
reduced to a maximum of 15 days at 45 °C to achieve 90%
drug release (Fig. 2C). The elevated temperature method
greatly reduced the release time and facilitated the accumu-
lation of a substantial amount of data [10].

The data distribution of microspheres characteristics was
shown in Fig. 3. For microspheres, particle size, drug loading,
and encapsulation efficiency were three key quality attributes.
Encapsulation efficiency and drug loading were important
indicators for preparation process and production cost, espe-
cially significant for some expensive drug formulations [38].
In the dataset, over 76.9% of the microspheres exhibited a
high encapsulation efficiency over 90% (Fig. 3A). Approxi-
mately 74.8% of the microspheres achieved a drug loading
higher than 30% (Fig. 3B), which led to a reduction in the use
of microspheres. Besides, particle size was an essential attrib-
ute for patient adherence. The large microparticles required
injection with a large diameter needle, which would cause
great pain during administration [39—41]. Figure 3C showed
that the particle size ranged from 0 to 125 um, where 88.8%
of the microspheres exhibited a size less than 100 pm.
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Fig.2 Percentage of the data from the publication and pharmaceutical company A, percentage of the data at 37 °C and 45 °C B, distribution of
the release time when reaching 90% cumulative drug release at 37 °C and 45 °C C in the dataset
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Fig.3 The distribution of encapsulation efficiency A, drug loading B, and particle size C in the dataset

Comparison of various machine learning models

Fourteen ML algorithms were applied and compared to
obtain the optimal models for predicting in vitro drug
release, and a group 10-fold CV was used to evaluate the
model performance. The model accuracy was then described
by four metrics, MAE, MSE, RMSE, and R?. The group
10-fold CV result in Table 4 showed that XGBoost obtained
the lowest MSE, RMSE, and highest R? while RF presented
the lowest MAE. Specifically, tree-based ensemble mod-
els, including XGBoost, RF, and LightGBM, obtained the
best model performance and highest model robustness. The
model performance of neural network architectures was
slightly worse than that of tree-based ensemble models, but
better than the other algorithms in the group 10-fold CV
results. Particularly, ResNet showed better predictions than
tree-based ensemble models on the validation set, as reflected
by lower validation MAE, MSE, RMSE, and higher R2, but
was slightly worse in group 10-fold CV. This is because
ResNet is sensitive to hyperparameters and was not optimized
for each fold in CV, resulting in lower model performance.
The linear regression algorithms obtained the largest predic-
tion error, where MLR gave the highest MAE, MSE, RMSE,
and the lowest R?, indicating that linear approaches were not
suitable for in vitro drug release prediction. KNN and SVM
presented moderate performance, giving an R? of 0.863 and
0.833 in the group 10-fold CV, showing a slightly worse pre-
dictive ability than neural network-based algorithms, but bet-
ter than linear approaches.

As XGBoost, RF, LightGBM, and ResNet showed good
results on this dataset, we further analyzed their predicted
cumulative release. The predicted drug release was com-
pared with the experimental values and was shown in the
scatter plots (Fig. 4).

Overall, the models provided accurate predictions on
this dataset, with most of the scatters falling around the
diagonals. Specifically, on the validation set, the overall
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predictions for ResNet were accurate but a few points suf-
fered from prediction bias. For the tree-based ensemble
models, most of the samples were in the less than 10% error
region, as shown in Fig. 4. The performance exhibit a little
differences between 0-30% (the initial release period) and
30-80%, and between 30-80% and 80-100% (the complete
release period). We divided the release profile into three
release periods, and further analyzed the differences. Within
the range 0-30%, XGBoost, RF, and LightGBM algorithms
overestimated the drug release in some formulations, which
might be caused by the complicated multi-modal non-Gaussian
distribution existing in the data range. We analyzed the data
points and formulations in the initial release period and
found that 41 of the total 286 formulations had initial burst
drug release. The initial burst drug release indicated over
30% fast drug dissolution in the first day, which resulted in
a distinct release pattern from other formulations. There-
fore, the complicated data distribution is a challenge for ML
modeling and making robust predictions in the initial release
period. Although the burst release of the “fail formulations”
may cause the serum concentration much higher than target
therapeutic window and potentially lead to toxicity [38, 42,
43], these “failed formulations” would still help to iden-
tify and distinguish the patterns of risky formulations in the
modeling. On the other hand, the models sometimes may
make underestimation at the complete release stage, which
may be caused by the different release rates under 37 °C and
45 °C conditions.

Predicting in vitro drug release profiles
by the consensus model

Since four individual models based on different assump-
tions all provided good predictions, averaging their predicted
results could expect to obtain good model performance and
further improve robustness. Here, all four individual models
were treated with equal contribution and referred to as a
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Fig.4 Scatter plots of experi-
mental values versus predicted
values calculated by XGBoost,
RF, LightGBM, ResNet,

and the consensus model on
the training set and the valida-
tion set
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consensus model. As shown in the scatter plots (Fig. 4), the
consensus model improved the predictions in both the ini-
tial release period and the complete release period. The
consensus model reduced the prediction errors and showed
smaller MAE values than that of the tree-based models in
the 0-30% release period (MAE=20.41 vs. 21.40, 21.41,
22.97), and in the 80-100% release period (MAE =18.35 vs.
20.21, 20.31, 20.35) for the hard-to-predict samples. Table 4
also indicated that the consensus model achieved better per-
formance on the validation set, suggesting an improvement
in prediction accuracy. Additionally, the consensus model
treated the prediction variance of these four models as pre-
diction uncertainty, which would be small when individual
models gave the similar predictions and presented large
values when the disagreement appeared in the predictions.
Overall, the consensus model may be a reliable solution for
in vitro drug release prediction.

Feature importance for prediction model

ML can also provide feature importance of each factor during
the model construction process, where the ranking results
can inform pharmaceutical scientists of the important influ-
encing parameters in microsphere formulation development.
Figure 5 showed the feature importance results calculated
by XGBoost, RF, and LightGBM algorithms. These features
covered from formulation components, process parameters,
and microspheres characteristics to dissolution conditions.
Besides dissolution time, the top 5 features in Fig. 5A, B,
and C were similar, which included particle size, drug load-
ing, encapsulation efficiency, API concentration, PLGA
concentration, dissolution temperature, and stirring speed
(See Discussion).

Experimental validation

To further investigate the model performance, risperidone
was selected as the model drug and twenty microsphere
formulations with different combinations of formulation
and process parameters were prepared. The in vitro drug
release testing results were compared with the predictions
from the established consensus model. Obtained risperi-
done-loaded microspheres all possessed highly spherical
shape with porous surface. Particle size ranged from 39.31
to 124.13 um. All drug loading was higher than 25%, while
encapsulation efficacy was above 80%. Supplemental mate-
rials showed the partial SEM pictures (Fig. S1) and charac-
teristics of microspheres (Table S2).

The consensus model exhibited good performance to pre-
dict the release behavior of experimental results, in which R?
reached 0.949, and MAE, MSE, and RMSE gave 5.3, 67.7,
and 8.2 respectively (Table S3 in supplemental materials).
Furthermore, the f, factor can compare similarity between

two profiles. A successful prediction is an f, value higher
than or equal to 50, indicating the average difference within
10%. The accuracy is the percentage of successful predic-
tions in all predictions. The f, values between experimental
and predicted released profiles of risperidone-load micro-
spheres were shown in Table 5. Fourteen of the twenty for-
mulations obtained an f, higher than 50, and the accuracy of
the consensus model was 70% on this experimental valida-
tion set.

Figure 6 showed the specific predicted profiles from the
consensus model. Most prediction profiles matched the
experimental release profiles well, especially for the pre-
diction of burst release (Fig. 6B and F). Agreed with our
analysis above, conservative predictions were given for some
formulations in the range of 80-100% (Fig. 6A, C, and F).
Besides, Fig. 61 showed that the consensus model was able
to provide more accurate predictions at 45 °C than at 37 °C
directly because the data amount at 45 °C was double than at
37 °C. Generally, these results above suggested the consen-
sus model had good predictive ability and well discovered
the influence of variables on the results, which could guide
the experiment design.

Molecular dynamics simulation results

MD simulation was applied to provide the micro-level view
of the microspheres preparation process. It can contribute
to a better understanding of the microscopic changes and
molecular mechanism involved in microsphere formation
which the traditionally experimental methods are hard to
investigate. Figure 7 revealed the dynamic preparation pro-
cess of microspheres. Figure 7A and B showed the initial
structure and 1 ns simulation process result of the oil phase
system, in which polymers and drugs randomly dispersed
in the organic solvent. Specifically, PLGAs exhibited obvi-
ous partially contracted into coil-like and partly expand
(Fig. 7B). This result agreed with the Flory—Krigbaum
theory [44, 45]. When in a good solvent, the interaction
between polymer segments and solvent molecules would be
energetically favorable and lead to polymer coils expanding,
indicating the influence of solvent selection on the excipient.
In the water phase, PVA molecules exhibited the tendency
to self-fold and gather together (Fig. 7C). This is because
PVA is an amphiphilic molecule with hydrophilic hydroxyl
groups and hydrophobic acetyl groups. After adding the oil
phase system into the water phase and removing the DCM,
the simulation results in Fig. 7D and E indicated that drugs
and polymers aggregated into a tight structure, which was
agreed with our previous study [31]. Most drug molecules
were encapsulated within the polymer sphere, while only
a few drug molecules and PVA molecules were accumu-
lated at the surface, indicating the need to wash the prepared
microspheres.
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Table 5 f, values between experimental and predicted released pro- Figure 8A and B showed the result of RMSD and Rg.
files RMSD was used to measure the change of system, while Rg
Formulation f, value Formulation f, value described the distribution of drugs in solution, indicating the

compactness of the system. The whole system was stable after

1 51.98 1 73.93 about 90 ns simulation, exhibiting a small fluctuation less than
2 46.52 12 49.17 1-A in RMSD result and a small Rg value of about 17-A. In
3 5244 13 79.31 addition, SASA was used to describe the contact area between
4 66.19 14 67.09 drug and solvent molecules, and the averaged hydrogen bonds
> >8.34 15 33.00 showed the number of hydrogen bonds formed between drug
6 49.13 16 46.14 and PLGA molecules in the simulation process (Fig. 8C and
7 68.55 17 5893 D). The descending SASA and ascending averaged number
8 74.07 18 39.66 of hydrogen bonds within the 180 ns simulation indicated the
? 41.60 19 37.85 increasing aggregation of drug and PLGA molecules. These
10 53.05 20 57.79

results showed that the stable and tight structure were obtained.
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Fig. 7 Snapshots of MD
simulations in the oil phase at
A 0 and B 1 ns, in the water
phase at 1 ns C, in the O/W
system at O ns D, in the system
with DCM removed at 100 ns.
Green molecules, risperidone;
red molecules, PLGA; blue
molecules, PVA

Oil phase Ons

Oil phase Ins Water phase 1ns (water hided)

O/W system Ons

System with DCM removed
180ns (water hided)

Discussion

Prediction model in microsphere formulation
development

Formulation development is commonly full of uncertainty.
The consensus model was established on 286 release pro-
files from publications and pharmaceutical company and
has shown good predictive capability on drug release

W
(=

Fig.8 CPPTRAIJ analysis

behaviors, which can provide instruction and help ease
such uncertainty. Besides, the development of micro-
spheres required the consideration of various variables,
especially the process parameters which were crucial for
scalability investigation. Our prediction model pointed out
the key factors in the microsphere formulation and pro-
cess, which was able to facilitate the formulation and pro-
cess design. Moreover, the elevated temperature method
has been used by the industry for rapid quality control.
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The good predictions for drug release at both 37 °C and
45 °C were provided by consensus model, which can fur-
ther reduce the time required and better meet the needs of
pharmaceutical industry.

Feature importance of prediction model

The microspheres research already revealed numerous
influencing factors on drug release but hard to tell the
priorities involved. Our consensus model can provide not
only the predictions but also the ranking result of the input
features. Besides dissolution time and dissolution tempera-
ture, some formulation and process parameters, such as
the encapsulation efficiency, drug loading, particle size,
API concentration, stirring rate, and PLGA concentration,
were identified as the key factors affecting the drug release
behavior of microspheres.

Drug loading was described as the amount of drug encap-
sulated in the microspheres. The increased drug loading
was considered to increase the release rate and the release
duration [8, 42]. API concentration can also affect the drug
release behavior by influencing the drug loading. High
API concentration may lead to inadequate homogenization
and result in the uneven drug distribution in microspheres.
Encapsulation efficiency was associated with the drug load-
ing and concentration of API. The effect of particle size has
been widely recognized. As the particle size decreases, the
surface-area-to-volume ratio and release rate increase. High
stirring speed can lower the particle size by decreasing the
size of microdroplets formed. The elevated dissolution
temperature results in improved the polymer mobility and
faster drug diffusion, hence achieve increased drug release.
Drug dissolution rate would increase greatly, when tem-
perature was around the glass transition temperature [46].
PLGA concentration was also an imperative factor on
drug release. High PLGA concentration would cause the
rapid polymer precipitation and accompanying with chain
entanglement, microspheres with low porosity and high
density were obtained [47]. Moreover, the emulsification
with higher PLGA concentration would exhibit relatively
less shrinkage during the solvent evaporation process,
which resulted in the microspheres with bigger size [38, 48].

Accelerated release testing by elevating
temperature

For sustained-release microspheres, dissolution testing
at physiological temperature (typically 37 °C) often takes
weeks for each batch, which is inefficient and unaccepta-
ble for the preliminary formulation screening. To speed up,
pharmaceutical companies usually apply the elevated tem-
perature (mostly 45 °C), which was also mentioned in the
FDA regulatory science program and EUFEPS workshop

[9, 10]. The relevance between the release profiles at the
elevated temperature and time-scaled ones at 37°C is con-
strained by the glass transition temperature (T,) of micro-
spheres [46]. The T, refers to the temperature range at which
the material transforms into the rubbery state from the glassy
one [49], and the T, of microspheres typically depends on
multiple factors, such as polymer properties, drug amount,
solvent residue, and others [50]. Generally, when the dis-
solution temperature exceeds T, the polymer mobility and
free volume will increase, and microspheres would suffer
from structural reconfiguration, such as pores closure and
structural deformation, which consequently changes the drug
release kinetics [51, 52], and therefore decreases the corre-
lation between accelerated and real-time condition. Recent
studies have already investigated the T, of risperidone-
loaded microspheres [51, 53], and release profiles under
accelerated condition at 45 °C and physiological condition
were demonstrated to be with high correlation (R?>0.98).

Although the elevated temperature approach significantly
shortens the release time, the initial burst release is difficult
to assess under the accelerated condition, which is a com-
monly existing and crucial concern in depot formulations
[10]. The product microspheres are in thermodynamic dis-
equilibrium and PLGA would spontaneously undergo physi-
cal aging to reach equilibrium [54, 55]. Physical aging could
alter the PLGA matrix structure, reducing free space and
causing the structure to relax heterogeneously, subsequently
resulting in the development of microvoids. During the dis-
solution process, the water instantly rushes into the voids,
resulting in a significant initial drug release, known as
the burst release [55, 56]. Therefore, initial phase inves-
tigations at physiological temperature for burst release
evaluation are indispensable [10].

The data of the two conditions was integrated in the mod-
eling, which enabled the predictions at both 37 °C and 45 °C,
and the performance of 45 °C condition was slightly better
thanks to the better quality and quantity of data. The users
can employ our models following the idea of experimental
practice, where 37 °C condition is used for burst release
assessment and 45 °C condition for rapid screening of for-
mulation and process based on the correlation between these
two conditions. This highly practical prediction model will
provide valuable guidance for the investigation of micro-
sphere formulations.

Conclusion

In this study, a constructed consensus model by the
XGBoost, RF, ResNet, and LightGBM algorithms was suc-
cessfully built with good predictive capability in predict-
ing release profiles at both 37 °C and 45 °C for microsphere
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formulation with small-molecule drugs. The formulation
feature importance provided by predictive models gave
hints and instruction for formulation experimental design.
Further experimental results validated the capability of our
consensus model, and the application of MD simulation
revealed the molecular mechanism of the risperidone-loaded
microsphere formation. In vitro dissolution results obtained
rapidly using the prediction model and the understanding of
formation mechanism at microscopic level derived from the
MD simulation results can assist the formulation researchers
in the design and screening of formulations, which is prom-
ising to help accelerate the rational design and development
of microspheres.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s13346-022-01253-z.
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