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Abstract
Microspheres have gained much attention from pharmaceutical and medical industry due to the excellent biodegradable and 
long controlled-release characteristics. However, the drug release behavior of microspheres is influenced by complicated 
formulation and manufacturing factors. The traditional formulation development of microspheres is intractable and inefficient 
by the experimentally trial-and-error methods. This research aims to build a prediction model to accelerate microspheres 
product development for small-molecule drugs by machine learning (ML) techniques. Two hundred eighty-six microsphere 
formulations with small-molecule drugs were collected from the publications and pharmaceutical company, including the 
dissolution temperature at both 37 ℃ and 45 ℃. After the comparison of fourteen ML approaches, the consensus model 
achieved accurate predictions for the validation set at 37 ℃ and 45 ℃ (R2 = 0.880 vs. R2 = 0.958), indicating the good per-
formance to predict the in vitro drug release profiles at both 37 ℃ and 45 ℃. Meanwhile, the models revealed the feature 
importance of formulations, which offered meaningful insights to the microspheres development. Experiments of microsphere 
formulations further validated the accuracy of the consensus model. Furthermore, molecular dynamics (MD) simulation 
provided a microscopic view of the preparation process of microspheres. In conclusion, the prediction model of microsphere 
formulations for small-molecule drugs was successfully built with high accuracy, which is able to accelerate microspheres 
product development and promote the quality control of microspheres for the pharmaceutical industry.
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Introduction

Microsphere products have gained broad attention from 
the pharmaceutical and medical industry due to the advan-
tage of biodegradability, biocompatibility, and tunability 

[1]. With the large amount of active pharmaceutical ingre-
dients (APIs) encapsulated in biodegradable polymer 
matrix, such as polylactic acid (PLA) and poly (lactic-co-
glycolic acid) (PLGA), microspheres can achieve extended 
release for weeks or even months, so as to dramatically 
reduce administration frequency [2, 3]. This extraordi-
nary advantage significantly relieves patient suffering 
and effectively improves treatment adherence, especially  Jiayin Deng, Zhuyifan Ye, Wenwen Zheng, and Jian Chen equally 
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for some non-alternative demands, e.g., psychiatric med-
ication, diabetes, and cancer [4, 5]. However, since the 
advent of microspheres manufacture technology 40 years 
ago, only several microsphere formulations have been suc-
cessfully developed from bench to bedside (Table 1). Their 
application is hindered by the complicated formulation  
and preparation process.

The microspheres depend on numerous formulation 
and process factors, including API and carrier material 
properties, solvent, temperature, and stirring speed et al. 
[6, 7]. The release mechanism of microspheres includes 
drug diffusion, polymer degradation, and erosion. For 
small hydrophobic drugs, they can diffuse through the 
polymer matrix and also be released by erosion, whereas 
the peptide drugs mainly diffuse through the pores and the 
diffusion rate is determined by the degree of erosion [8]. 
In order to obtain the desired release profiles, numerous 
formulation combinations should be considered. Moreo-
ver, the formulation and process parameters need signifi-
cant optimization from the laboratory-scale test to large-
scale manufacture. Currently, the in vitro release testing 
at 37 ℃ applied in microsphere formulation screen-
ing may take up to several months. In order to reduce 
release time, the FDA regulatory science program [9] 
and EUFEPS workshop [10] have mentioned the elevated 
temperature method, which significantly benefits the pre-
liminarily formulation space searching. However, given 
the high-dimensional space of microsphere formulation 
to explore, the traditional R&D process on the basis of 
trial-and-error experimental approaches could take years 
to go, which is still doomed to be laborious, material 

and time-consuming. Moreover, even some commercial 
products are still not the best fit for purpose, further far 
from the optimal setting [11]. Thus, the pharmaceutical 
industry requires a more efficient approach to accelerate 
the microsphere formulation development.

Recently, machine learning (ML) techniques have been 
integrated in different aspects of our life, such as auto-
mated driving, medical diagnosis, and drug discovery 
and development [12]. The unique advantage of ML is to 
explore the implicit knowledge and make predictions for 
complex issues, which could reduce abundant experiment 
work, and efficiently promote development process [12]. 
 In addition to drug discovery, ML has also been introduced 
in pharmaceutical formulation development, such as the 
prediction of dissolution profile and physical stability of 
solid dispersions [13, 14], size and polydispersity index 
of drug nanocrystals [15], lipid nanoparticle for mRNA 
vaccine [16], self-emulsifying drug delivery systems [17], 
and binary cyclodextrin complexes [18]. ML approaches 
were also applied in microsphere formulation. Szlękand 
et al. built artificial neural network (ANN) models with 68 
formulation data to fit the relationship between formula-
tion and protein drug dissolution [19, 20]. Rodrigues de 
Azevedo et al. analyzed the impact of physicochemical 
factors on the initial drug release from PLGA(-PEG) sys-
tems by using partial least squares regression and decision 
tree (DT) on 152 experimental data [21]. To investigate 
potential combinations of polymer and drug, Bannigan 
et al. applied 4 ANN-structures on 181 formulation data 
of both long-acting injectable implants and microspheres 
[22]. These examples showed the feasibility of ML in 

Table 1   Summary of drug-loaded microsphere products approved by the U.S. Food and Drug Administration (FDA)

Drug product Active ingredient Route of administration Time range Indications Approval date

Decapeptyl Triptorelin acetate Intramuscular injection 1, 3 months Prostate cancer; endometriosis; 
uterine fibroids

1986

Lurpon/Enantone Leuprolide acetate Intramuscular injection 1, 3, 4, 6 months Prostate cancer; breast cancer 1995
Risperdal Consta Risperidone Intramuscular injection 2 weeks Schizophrenia; bipolar I disorder 1997
Sandotatin LAR Octreotide acetate Subcutaneous injection 4 weeks Severe diarrhea associated with 

metastatic carcinoid tumors or 
VIP-secreting tumors

1998

Nutropin Somatropin Intramuscular injection 1 month Growth failure 1999
Trelstar Triptorelin pamoate Intramuscular injection 4 weeks Advanced prostate cancer 2000
Arestin Minocycline Peridontal injection 1 week Periodontitis 2001
Vivitrol Naltrexone Intramuscular injection 2 weeks Alcohol dependence 2006
Bydureon Exenatide Intramuscular injection 1 week Type 2 diabetes 2012
Signifor LAR Pasireotide pamoate Intramuscular injection 1 month Acromegaly 2014
Zilretta Triamcinolone acetonide Intrarticular injection 3 months Osteoarthritis pain of the knee 2017
Bydureon BCise Exenatide Intramuscular injection 1 week Type 2 diabetes 2017
Triptodur kit Triptorelin pamoate Intramuscular injection 24 weeks Central precocious puberty 2017
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microsphere formulations. However, previous studies only 
did the preliminarily trial with limited data from the labo-
ratory scale. A practical model for the industrial scale is 
still under urgent demand.

This research aimed to accelerate microspheres product 
development for the pharmaceutical industry by ML tech-
niques. Two hundred eighty-six microsphere formulations 
with small-molecule drugs were collected from both pub-
lications and the pharmaceutical company, covering the 
dissolution temperature at 37 ℃ and 45 ℃. Fourteen ML 
algorithms were compared for predicting the in vitro drug 
release profiles and subsequently validated by the experi-
ments. Furthermore, molecular dynamic simulation was 
applied for investigating molecular mechanism of micro-
sphere formation.

Methods

Dataset construction

Two hundred eighty-six PLGA microsphere formulations 
for small-molecule drugs were obtained from publications 
(32 formulations) and Livzon Microsphere Ltd. (254 for-
mulations). This dataset included 12 small-molecule drugs 
and 3182 release time points. Publications were collected 
from the SCOPUS database, where PLGA microspheres 
for small-molecule drugs mentioned were prepared by 
solvent evaporation/extraction methods. The words or 
phrases, “microspheres”, “microparticle”, “PLGA”, “poly 
(lactic-co-glycolic acid)”, and “sustained release” were 
used as keywords for searching articles in the database. 
Since release profiles at high temperature correlated well 
with those at 37 °C and were in large amounts, both the 
data of 37 °C and 45 °C were included in this dataset. 
Information about drug release behavior was collected and 
described as 35 features, which comprehensively consid-
ered the formulation parameters, processing conditions, 
microspheres characteristics, and in vitro dissolution con-
ditions. Eleven physicochemical properties of the drugs 

were used as input features, which included molecular 
weight, XLogP3, hydrogen bond donor count, hydrogen 
bond acceptor count, rotatable bond count, topological 
polar surface area, heavy atom count, complexity, melt-
ing point, logS, and logP. The input features were sum-
marized in Table 2, and cumulative drug release was the 
predictive target.

Before establishing prediction models on the dataset, data 
pre-processing was performed. Drugs were characterized as 
11 physicochemical properties derived from the Pubchem 
database, and where logP and logS not given were calcu-
lated by ALOGPS [23]. For categorical features, each label 
was assigned as an integer. Extremely uneven distributed  
features were processed by taking the logarithm of the fea-
tures to base 10. Missing values were dealt with either the 
statistical mean or the mode based on pharmaceutical knowl-
edge. For neural networks, support vector machine (SVM), 
and k-nearest neighbors (kNN), the features were first stand-
ardized before being fed into the models.

Dataset splitting strategy

In general, the whole dataset was evenly split into the train-
ing set (70%) and the validation set (30%) by the group ran-
dom sampling method. The training set was employed for 
training models and the validation set was used for tuning 
hyperparameters. Since a drug dissolution profile consists 
of multiple time points and corresponds to one formulation, 
all release points of the same profile would share the same 
formulation information. Here, all release points were firstly 
grouped into formulations and numbered by formulation 
index. Secondly, the dataset was then divided into training 
set and validation set by formulation index. The group-based 
split approach guaranteed that the whole release profile was 
divided into one subset and additionally, the similar training 
set and validation set distribution were obtained (Fig. 1).

Group 10-tenfold cross validation (CV) was applied 
for model performance evaluation, which ensured that the 
release points from the same formulation were not divided 

Table 2   Summary of input features in the dataset

PLGA poly (lactic-co-glycolic acid), PVA polyvinyl alcohol

Categories Input features

Formulation Physicochemical properties of drug (molecular weight, XLogP3, hydrogen bond donor count, hydrogen bond 
acceptor count, rotatable bond count, topological polar surface area, heavy atom count, complexity, melting 
point, logS, logP), concentration of drug, PLGA and PVA, and type and volume of solvent.

Processing condition Emulsification device, solvent elimination method, temperature during emulsification and solvent elimination 
process, and stirring speed.

Microspheres characteristics Drug loading, encapsulation efficiency, particle size, and particle surface type.
In vitro dissolution condition Dissolution temperature, type and pH of dissolution medium, surfactant in dissolution medium, dose, and 

time.
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into different subsets. In group 10-fold CV, the dataset was 
split into 10 subsets based on formulation, and for each fold, 
9 subsets were served as the training data and the rest was for 
evaluating performance, this process iterated for 10 times.

Evaluation criteria

Mean absolute error (MAE), mean squared error (MSE), 
root mean squared error (RMSE), and coefficient of deter-
mination (R2) were applied for evaluating the model per-
formance. They are commonly used in ML, where MAE, 
MSE, and RMSE evaluate the distance between individual 
true and predicted values, and R2 evaluates the correlation 
between them. The evaluation criteria were calculated by the 
following equations:

where n was the number of samples, yi was the real value 
for time point i , and ŷi was the prediction, and y was the 
average value.

Furthermore, in experimental validation, to evaluate the 
model performance on the whole profile, we specified that 
predictions with an average prediction error no more than 
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10% for all time points are identified as successful. This 
was drawn from the requirement in pharmaceutics that a 
10% error is considered acceptable [24–26]. Similar factor 
(f2) was introduced to provide a pharmaceutical indication:

where n′ was the number of time points in a curve, yi was the 
experimental value for time point i , and ŷi was the predicted 
value. According to the FDA recommendation, only the first 
time point after 85% dissolution is used in the f2 calculation 
[27]. This is a more rigorous approach than averaging the 
variance of all time points, because the points after 85% dis-
solution are generally plateau with small variance and high 
similarity. Therefore, we only added the first time point after 
85% release in the f2 calculation for the good pharmaceutical 
evaluation.

Machine learning models establishment

Fourteen ML approaches were used to develop regression 
models for predicting the microspheres in vitro cumu-
lative drug release, including XGBoost, random forest  
(RF), LightGBM, residual neural network (ResNet), deep 
neural network (DNN), DT, artificial neural network 
(ANN), artificial neural network-multilayer perceptron 
(ANN-MLP), kNN, SVM, ridge regression, partial least 
squares regression (PLS), lasso regression, and multiple 
linear regression (MLR). These algorithms covered con-
ventional kernel-based and gradient-based ML approaches 
previously dominated in pharmaceutics, shallow models 
and deep learning, single DT and tree-based ensemble 
learning, and linear and non-linear models. The neural 
networks, the LightGBM model, the XGBoost model, 
and other ML models were established by the TensorFlow 
package (version 2.3.1) [28, 29], the LightGBM package 
(version 3.2.1), the XGBoost package (version 1.5.0), 
and the Scikit-Learn package (version 0.24.2) in Python, 
respectively.

Furthermore, the optimal hyperparameters were 
searched on the validation set by three searching methods, 
grid search, random search, and manual search. Specifi-
cally, DT, kNN, and PLS employed grid search, XGBoost, 
LightGBM, RF, and SVM utilized random search. Due to 
the large hyperparameter space of neural networks, grid 
search and random search may lead to overfitting or under-
fitting problems, for which manual search was conducted 
for neural networks. Lasso regression, ridge regression, 
and MLR had no hyperparameters. The hyperparameter  
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Fig. 1   Distribution of cumulative drug release in the training set and 
the validation set
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configurations of ML algorithms were shown in the  
Table 3, and the values were given in brackets.

Consensus modeling

In order to achieve better prediction capability and robustness 
than individual models, we have further constructed the con-
sensus model. Individual models can result in different model 
uncertainty due to different hypothesis adopted. Consensus 
model is able to reduce the prediction error by integrating 
single models. Since the consensus model has combined dif-
ferent hypothesis, it can figure out the relationship between 
input features and output variable more comprehensively than 
one individual model [30]. By averaging the results of those 
well-performed models, the consensus model is expected to 
have good and also robust model performance.

Here, after comparing the performance of single 
models, those with comparably good performance were 
selected as sub-models to ensure the consensus model 
possesses high predictive capability. All sub-models were 
treated as equal contribution, in which their predictions 
were averaged as the output of consensus model.

Experimental validation

To further validate the accuracy of prediction models, 
20 external microsphere formulations were prepared to 
further validate the accuracy of ML models. Risperi-
done, developed as the first microspheres product for 
small-molecule drug, was selected as the model drug for 
microspheres preparation by emulsion solvent evapora-
tion method. The combinations of formulation and pro-
cess parameters were listed in Table S1 in supplementary 
material, and the preparation process and characterization 
method were described as follows.

Materials

Risperidone was purchased from Jiangsu Nhwa Pharma-
ceutical Co., Ltd. (Jiangsu, China). PLGA, with a lactide/
glycolide ratio of 75:25, was provided by Evonik Indus-
tries (Shanghai, China). Polyvinyl alcohol (PVA) was 
purchased from Mitsubishi Chemical (Tokyo, Japan). 
Dichloromethane (DCM) was obtained from Sino Pharm 
(Beijing, China). Polysorbate 20 was provided by Nanjing 

Table 3   Hyperparameter configurations of machine learning approaches

“;” was used for separating different hyperparameters; “,” was for different components of a hyperparameter; “\” meant no hyperparameter

Machine learning 
algorithm

Hyperparameter configurations

XGBoost The learning rate (0.00788); the number of trees (1188); the subsample ratio (0.817); the subsample ratio of columns 
(0.869); the maximum depth of the trees (4)

RF The number of the maximum features (24); the number of the trees (555); the maximum depth of the trees (23); the 
minimum number of the samples used to split (10); the minimum number of samples in a child leaf (5)

LightGBM The learning rate (0.00315); the number of trees (1104); the subsample ratio (0.302); the subsample ratio of columns 
(0.853); maximum tree leaves for base learners (50)

ResNet The number of hidden layers (20); the number of neurons in each of the hidden layers (1024, 256, 128, 64, 64, 64, 64, 64, 
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64); the learning rate (0.01); the optimization algorithm (Adam with β1, β2 of 
0.9, 0.999); the learning rate decay (0.01); the epoch size (151); the l2 regularization coefficient lambda (0.16); the batch 
size (500)

DNN The number of hidden layers (10); the number of neurons in each of the hidden layers (1024, 256, 128, 64, 64, 64, 64, 64, 
64, 64); the learning rate (0.001); the optimization algorithm (Adam with β1, β2 of 0.9, 0.999); the learning rate decay 
(0.02); the epoch size (120); the l2 regularization coefficient lambda (0.2); the batch size (500)

DT The maximum depth of the tree (15); the minimum number of the samples used to split (14); the minimum number of 
samples in a leaf (6)

kNN The number of neighbors (4); weight function used in prediction (the standard Euclidean distance with uniform weights)
SVM The penalty parameter C (426.9); the γ (0.14)
ANN The number of hidden layers (4); the number of neurons in each of the hidden layers (1024, 256, 128, 64); the learning rate 

(0.001); the optimization algorithm (Adam with β1, β2 of 0.9, 0.999); the learning rate decay (0); the epoch size (600); 
the l2 regularization coefficient lambda (0); the batch size (500)

ANN-MLP The number of hidden layers (1); the number of neurons in each of the hidden layers (1024); the learning rate (0.003); 
the optimization algorithm (Adam with β1, β2 of 0.9, 0.999); the learning rate decay (0); the epoch size (200); the l2 
regularization coefficient lambda (0); the batch size (500)

PLS The number of components (13)
Lasso regression \
Ridge regression \
MLR \
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Well Pharmaceutical Group Co., Ltd. (Nanjing, China). 
The other chemicals or solvents were of reagent or ana-
lytical grade.

Microspheres preparation

Risperidone-loaded microspheres were prepared by 
the emulsion solvent evaporation method as previously 
described [31]. Briefly, risperidone and PLGA were dis-
solved completely in DCM. The organic solution was 
emulsified in aqueous solution containing PVA by stir-
ring using a high-shear emulsifier. Emulsion was then 
stirred at room temperature to evaporate DCM and 
allowed microspheres formation. Solid microspheres 
were harvested by microporous membrane. Collected 

microspheres were then washed and freeze-dried. The 
batch size was ranged from 1.8 to 24 g.

Scanning electron microscope (SEM)

Scanning electron microscope (Pro, Phenom World, Eind-
hoven, The Netherlands) was employed to investigate the 
microscopic morphology of microspheres. Risperidone-
loaded microspheres were placed and mounted on the 
sample table. A thin gold layer was coated on the micro-
spheres by ion sputtering instrument (LJ-16, Yulong Tech-
nology, Beijing, China). Conductive microspheres were 
then observed by SEM.

Size and size distribution

After uniform mixing, 30–60 mg microspheres were sam-
pling. The samples were dispersed in 5 ml ultrapure water 
by sonicating. The size and size distribution of micro-
spheres were estimated by a laser size analyzer (MS2000, 
Malvern Panalytical, Malvern, UK). Particle size was 
described by D10, D50, and D90, and size distribution was 
evaluated by SPAN. SPAN is defined as (D90 -D10)/D50, 
where D10, D50, and D90 were the size that 10%, 50%, and 
90% of microspheres were less than.

Entrapment efficiency and drug loading

A total of 20–40 mg of microspheres were sampling after 
uniform mixing, and the samples were dissolved in 20 ml 
ammonium acetate buffer-acetonitrile solution to extract 

risperidone completely. The aqueous solution was filtered 
with 0.22 μm microporous membrane, and then quantified 
by Agilent 1260 type HPLC equipped with Agilent G1314F 
1260 VWD detector and Thermo Syncronis C18 chroma-
tographic column (150 mm × 4.6 mm, 5 µm). The mobile 
phase formulated at 0.065 mol/L ammonium acetate buffer: 
acetonitrile (70:30) flowed at 1.0 mL/min and column tem-
perature was 40 °C. Detection wavelength here was 275 nm. 
Drug loading referred to the ratio of the encapsulated drug in 
microspheres and microspheres weight. According to drug 
loading, entrapment efficiency was calculated as the ratio 
of content of drug encapsulated and drug content used in 
microspheres preparation.

In vitro release testing

In brief, 5 mg microspheres was dispersed in 50 ml HEPES 
buffer solution (pH 7.4) containing polysorbate 20 in Erlen-
meyer flask at incubator. If not specified, the dissolution 
temperature was set to 45 ℃. At pre-determined time, 1 ml 
solution was sampled, and equal fresh medium was added. 
Sampling solution was filtered with 0.22 μm microporous 
membrane before quantified by HPLC. Concentration of ris-
peridone at each sampling time was measured, and cumula-
tive release was determined.

Molecular dynamics simulation

In this part, the formation of microspheres was molecu-
lar dynamically visualized and analyzed to investigate the 
microscopic interactions between drugs and excipients 
which the experiments cannot reach. Firstly, all three-
dimensional molecules were constructed by Discovery 
Studio Visualizer. The relevant topology and partial charge 
were described by applying General AMBER force field 
(GAFF) [32] and AM1-BCC method [33]. In consistence 
with proportions in microspheres preparation, 21 risperidone  
molecules, 4 PLGA fragment with eight units, 1725 DCM 
molecules, and 20 PVA fragment with six units were used 
in initial model preparation. Since the preparation process 
involved the emulsification of oil phase in water phase, two 
initial models, oil phase model and water phase model, were 
built respectively. Risperidone, PLGA, DCM, and PVA mol-
ecules were randomly dispersed in two different vacuum 

Drug Loading(%) =
Weight of encapsulated drug

Weight of microspheres
× 100%

Entrapment Eff iciency(%) =
Weight of encapsulated drug

Weight of drug used in preparation
× 100%
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boxes by Packmol software [34]. Initial models were loaded 
in GAFF by using LEAP module. Specially, 10-Å thickness 
TIP3P water solution was added to initial structure of PVAs.

After the preparation, four simulations were performed 
by using AMBER18 software. Firstly, the oil phase model 
and water phase model were respectively conducted an 
1 ns MD simulation to approximate the dispersion pro-
cess of PLGAs and risperidone in DCMs, and PVAs in 
water solution. Subsequently, to simulate the oil-in-water 
emulsification process, the simulated oil phase model 
was immersed in simulated water phase model to con-
struct O/W system by using visual molecular dynamics 
(VMD) software [35]. The constructed system was then 
performed 10 ns simulation. Finally, the DCMs of the 
last frame of the simulated O/W system extracted were 
removed. This initial structure constructed was subse-
quently conducted 180 ns MD simulation to simulate 
the solvent evaporation and microspheres solidification 
processes.

Each of the simulation procedures mentioned above 
included the following steps. Briefly, energy minimiza-
tion was performed to remove the irrational contacts of 
atoms. Subsequently, the system was heated from 0 to 
300 K in 40 ps and held for 160 ps. The coupling algo-
rithm of Langevin thermostat [36] and Berendsen barostat 
[37] were used to hold the temperature at 300 K and pres-
sure at 1 atm, respectively. The MD simulation was per-
formed at 0.002 ps per step, and trajectory file was saved 
every 10 ps. The simulation process was visualized by 
VMD software and CPPTRAJ tool was used in subse-
quent analysis. Root-mean-square deviation (RMSD), 
radius of gyration (Rg), solvent-accessible surface area 
(SASA), and the number of hydrogen bonds were ana-
lyzed for evaluation.

Results

Data distribution in the dataset

In this study, a dataset for microspheres was collected from 
the publication and the pharmaceutical company, consisting 
of 12 small-molecule drugs, 286 microsphere formulations, 
and 3182 release time points, where both 37 ℃ and 45 ℃ 
dissolution temperatures were considered. Specifically, as 
shown in Fig. 2A, nearly 90% of data came from the pharma-
ceutical company. In terms of dissolution temperature, more 
than two thirds of the data were at 45 ℃ and less than one 
third were at 37 ℃ (Fig. 2B). Drug release testing at 37 °C 
typically required a release time of about 35 days, which was 
reduced to a maximum of 15 days at 45 °C to achieve 90% 
drug release (Fig. 2C). The elevated temperature method 
greatly reduced the release time and facilitated the accumu-
lation of a substantial amount of data [10].

The data distribution of microspheres characteristics was 
shown in Fig. 3. For microspheres, particle size, drug loading, 
and encapsulation efficiency were three key quality attributes. 
Encapsulation efficiency and drug loading were important 
indicators for preparation process and production cost, espe-
cially significant for some expensive drug formulations [38]. 
In the dataset, over 76.9% of the microspheres exhibited a 
high encapsulation efficiency over 90% (Fig. 3A). Approxi-
mately 74.8% of the microspheres achieved a drug loading 
higher than 30% (Fig. 3B), which led to a reduction in the use 
of microspheres. Besides, particle size was an essential attrib-
ute for patient adherence. The large microparticles required 
injection with a large diameter needle, which would cause 
great pain during administration [39–41]. Figure 3C showed 
that the particle size ranged from 0 to 125 µm, where 88.8% 
of the microspheres exhibited a size less than 100 µm.

Fig. 2   Percentage of the data from the publication and pharmaceutical company A, percentage of the data at 37 °C and 45 °C B, distribution of 
the release time when reaching 90% cumulative drug release at 37 °C and 45 °C C in the dataset
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Comparison of various machine learning models

Fourteen ML algorithms were applied and compared to 
obtain the optimal models for predicting in  vitro drug  
release, and a group 10-fold CV was used to evaluate the 
model performance. The model accuracy was then described 
by four metrics, MAE, MSE, RMSE, and R2. The group 
10-fold CV result in Table 4 showed that XGBoost obtained 
the lowest MSE, RMSE, and highest R2 while RF presented 
the lowest MAE. Specifically, tree-based ensemble mod-
els, including XGBoost, RF, and LightGBM, obtained the  
best model performance and highest model robustness. The 
model performance of neural network architectures was 
slightly worse than that of tree-based ensemble models, but 
better than the other algorithms in the group 10-fold CV 
results. Particularly, ResNet showed better predictions than 
tree-based ensemble models on the validation set, as reflected 
by lower validation MAE, MSE, RMSE, and higher R2, but 
was slightly worse in group 10-fold CV. This is because 
ResNet is sensitive to hyperparameters and was not optimized 
for each fold in CV, resulting in lower model performance. 
The linear regression algorithms obtained the largest predic-
tion error, where MLR gave the highest MAE, MSE, RMSE, 
and the lowest R2, indicating that linear approaches were not 
suitable for in vitro drug release prediction. kNN and SVM 
presented moderate performance, giving an R2 of 0.863 and 
0.833 in the group 10-fold CV, showing a slightly worse pre-
dictive ability than neural network-based algorithms, but bet-
ter than linear approaches.

As XGBoost, RF, LightGBM, and ResNet showed good 
results on this dataset, we further analyzed their predicted 
cumulative release. The predicted drug release was com-
pared with the experimental values and was shown in the 
scatter plots (Fig. 4).

Overall, the models provided accurate predictions on 
this dataset, with most of the scatters falling around the 
diagonals. Specifically, on the validation set, the overall 

predictions for ResNet were accurate but a few points suf-
fered from prediction bias. For the tree-based ensemble 
models, most of the samples were in the less than 10% error 
region, as shown in Fig. 4. The performance exhibit a little 
differences between 0–30% (the initial release period) and 
30–80%, and between 30–80% and 80–100% (the complete 
release period). We divided the release profile into three 
release periods, and further analyzed the differences. Within 
the range 0–30%, XGBoost, RF, and LightGBM algorithms 
overestimated the drug release in some formulations, which  
might be caused by the complicated multi-modal non-Gaussian  
distribution existing in the data range. We analyzed the data 
points and formulations in the initial release period and 
found that 41 of the total 286 formulations had initial burst 
drug release. The initial burst drug release indicated over 
30% fast drug dissolution in the first day, which resulted in 
a distinct release pattern from other formulations. There-
fore, the complicated data distribution is a challenge for ML 
modeling and making robust predictions in the initial release 
period. Although the burst release of the “fail formulations” 
may cause the serum concentration much higher than target 
therapeutic window and potentially lead to toxicity [38, 42, 
43], these “failed formulations” would still help to iden-
tify and distinguish the patterns of risky formulations in the 
modeling. On the other hand, the models sometimes may 
make underestimation at the complete release stage, which 
may be caused by the different release rates under 37 °C and 
45 °C conditions.

Predicting in vitro drug release profiles 
by the consensus model

Since four individual models based on different assump-
tions all provided good predictions, averaging their predicted 
results could expect to obtain good model performance and 
further improve robustness. Here, all four individual models 
were treated with equal contribution and referred to as a  

Fig. 3   The distribution of encapsulation efficiency A, drug loading B, and particle size C in the dataset
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Fig. 4   Scatter plots of experi-
mental values versus predicted 
values calculated by XGBoost, 
RF, LightGBM, ResNet, 
and the consensus model on 
the training set and  the valida-
tion set
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consensus model. As shown in the scatter plots (Fig. 4), the  
consensus model improved the predictions in both the ini-
tial release period and the complete release period. The  
consensus model reduced the prediction errors and showed 
smaller MAE values than that of the tree-based models in 
the 0–30% release period (MAE = 20.41 vs. 21.40, 21.41, 
22.97), and in the 80–100% release period (MAE = 18.35 vs. 
20.21, 20.31, 20.35) for the hard-to-predict samples. Table 4 
also indicated that the consensus model achieved better per-
formance on the validation set, suggesting an improvement 
in prediction accuracy. Additionally, the consensus model 
treated the prediction variance of these four models as pre-
diction uncertainty, which would be small when individual 
models gave the similar predictions and presented large 
values when the disagreement appeared in the predictions. 
Overall, the consensus model may be a reliable solution for 
in vitro drug release prediction.

Feature importance for prediction model

ML can also provide feature importance of each factor during 
the model construction process, where the ranking results 
can inform pharmaceutical scientists of the important influ-
encing parameters in microsphere formulation development. 
Figure 5 showed the feature importance results calculated 
by XGBoost, RF, and LightGBM algorithms. These features 
covered from formulation components, process parameters, 
and microspheres characteristics to dissolution conditions. 
Besides dissolution time, the top 5 features in Fig. 5A, B, 
and C were similar, which included particle size, drug load-
ing, encapsulation efficiency, API concentration, PLGA 
concentration, dissolution temperature, and stirring speed 
(See Discussion).

Experimental validation

To further investigate the model performance, risperidone 
was selected as the model drug and twenty microsphere 
formulations with different combinations of formulation 
and process parameters were prepared. The in vitro drug 
release testing results were compared with the predictions 
from the established consensus model. Obtained risperi-
done-loaded microspheres all possessed highly spherical 
shape with porous surface. Particle size ranged from 39.31 
to 124.13 µm. All drug loading was higher than 25%, while 
encapsulation efficacy was above 80%. Supplemental mate-
rials showed the partial SEM pictures (Fig. S1) and charac-
teristics of microspheres (Table S2).

The consensus model exhibited good performance to pre-
dict the release behavior of experimental results, in which R2 
reached 0.949, and MAE, MSE, and RMSE gave 5.3, 67.7, 
and 8.2 respectively (Table S3 in supplemental materials). 
Furthermore, the f2 factor can compare similarity between 

two profiles. A successful prediction is an f2 value higher 
than or equal to 50, indicating the average difference within 
10%. The accuracy is the percentage of successful predic-
tions in all predictions. The f2 values between experimental 
and predicted released profiles of risperidone-load micro-
spheres were shown in Table 5. Fourteen of the twenty for-
mulations obtained an f2 higher than 50, and the accuracy of 
the consensus model was 70% on this experimental valida-
tion set.

Figure 6 showed the specific predicted profiles from the 
consensus model. Most prediction profiles matched the 
experimental release profiles well, especially for the pre-
diction of burst release (Fig. 6B and F). Agreed with our 
analysis above, conservative predictions were given for some 
formulations in the range of 80–100% (Fig. 6A, C, and F). 
Besides, Fig. 6I showed that the consensus model was able 
to provide more accurate predictions at 45 ℃ than at 37 ℃ 
directly because the data amount at 45 ℃ was double than at 
37 ℃. Generally, these results above suggested the consen-
sus model had good predictive ability and well discovered 
the influence of variables on the results, which could guide 
the experiment design.

Molecular dynamics simulation results

MD simulation was applied to provide the micro-level view 
of the microspheres preparation process. It can contribute 
to a better understanding of the microscopic changes and 
molecular mechanism involved in microsphere formation 
which the traditionally experimental methods are hard to 
investigate. Figure 7 revealed the dynamic preparation pro-
cess of microspheres. Figure 7A and B showed the initial 
structure and 1 ns simulation process result of the oil phase 
system, in which polymers and drugs randomly dispersed 
in the organic solvent. Specifically, PLGAs exhibited obvi-
ous partially contracted into coil-like and partly expand 
(Fig. 7B). This result agreed with the Flory–Krigbaum 
theory [44, 45]. When in a good solvent, the interaction 
between polymer segments and solvent molecules would be 
energetically favorable and lead to polymer coils expanding, 
indicating the influence of solvent selection on the excipient. 
In the water phase, PVA molecules exhibited the tendency 
to self-fold and gather together (Fig. 7C). This is because 
PVA is an amphiphilic molecule with hydrophilic hydroxyl 
groups and hydrophobic acetyl groups. After adding the oil 
phase system into the water phase and removing the DCM, 
the simulation results in Fig. 7D and E indicated that drugs 
and polymers aggregated into a tight structure, which was 
agreed with our previous study [31]. Most drug molecules 
were encapsulated within the polymer sphere, while only 
a few drug molecules and PVA molecules were accumu-
lated at the surface, indicating the need to wash the prepared 
microspheres.
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Fig. 5   Feature importance in microspheres dataset ranked by XGBoost A, RF B, and LightGBM C algorithm
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Figure 8A and B showed the result of RMSD and Rg. 
RMSD was used to measure the change of system, while Rg 
described the distribution of drugs in solution, indicating the 
compactness of the system. The whole system was stable after 
about 90 ns simulation, exhibiting a small fluctuation less than 
1-Å in RMSD result and a small Rg value of about 17-Å. In 
addition, SASA was used to describe the contact area between 
drug and solvent molecules, and the averaged hydrogen bonds 
showed the number of hydrogen bonds formed between drug 
and PLGA molecules in the simulation process (Fig. 8C and 
D). The descending SASA and ascending averaged number 
of hydrogen bonds within the 180 ns simulation indicated the 
increasing aggregation of drug and PLGA molecules. These 
results showed that the stable and tight structure were obtained.

Table 5   f2 values between experimental and predicted released pro-
files

Formulation f2 value Formulation f2 value

1 51.98 11 73.93
2 46.52 12 49.17
3 52.44 13 79.31
4 66.19 14 67.09
5 58.34 15 53.00
6 49.13 16 46.14
7 68.55 17 58.93
8 74.07 18 59.66
9 41.60 19 37.85
10 53.05 20 57.79

Fig. 6   Experimental in  vitro release profiles of risperidone-loaded 
microspheres versus predicted profiles of the consensus model. Red, 
predicted values; black, experimental values. A PVA concentration, 
B stirring speed, C PLGA molecular weight, D PLGA concentration, 

E API concentration, F temperature during solvent elimination, G 
phase volume ratio, H temperature during emulsification, I dissolu-
tion temperature
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Discussion

Prediction model in microsphere formulation 
development

Formulation development is commonly full of uncertainty. 
The consensus model was established on 286 release pro-
files from publications and pharmaceutical company and 
has shown good predictive capability on drug release 

behaviors, which can provide instruction and help ease 
such uncertainty. Besides, the development of micro-
spheres required the consideration of various variables, 
especially the process parameters which were crucial for 
scalability investigation. Our prediction model pointed out 
the key factors in the microsphere formulation and pro-
cess, which was able to facilitate the formulation and pro-
cess design. Moreover, the elevated temperature method 
has been used by the industry for rapid quality control. 

Fig. 7   Snapshots of MD 
simulations in the oil phase at 
A 0 and B 1 ns, in the water 
phase at 1 ns C, in the O/W 
system at 0 ns D, in the system 
with DCM removed at 100 ns. 
Green molecules, risperidone; 
red molecules, PLGA; blue 
molecules, PVA

Fig. 8   CPPTRAJ analysis 
results of solvent removed 
system. A Root-mean-square 
deviation vs. time. B Radius of 
gyration of the system vs. time. 
C Solvent accessible surface 
areas vs. time. D The averaged 
hydrogen bonds between drug 
and PLGA molecules during the 
simulation
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The good predictions for drug release at both 37 °C and 
45 °C were provided by consensus model, which can fur-
ther reduce the time required and better meet the needs of 
pharmaceutical industry.

Feature importance of prediction model

The microspheres research already revealed numerous 
influencing factors on drug release but hard to tell the 
priorities involved. Our consensus model can provide not 
only the predictions but also the ranking result of the input 
features. Besides dissolution time and dissolution tempera-
ture, some formulation and process parameters, such as 
the encapsulation efficiency, drug loading, particle size, 
API concentration, stirring rate, and PLGA concentration, 
were identified as the key factors affecting the drug release 
behavior of microspheres.

Drug loading was described as the amount of drug encap-
sulated in the microspheres. The increased drug loading 
was considered to increase the release rate and the release 
duration [8, 42]. API concentration can also affect the drug 
release behavior by influencing the drug loading. High 
API concentration may lead to inadequate homogenization 
and result in the uneven drug distribution in microspheres. 
Encapsulation efficiency was associated with the drug load-
ing and concentration of API. The effect of particle size has  
been widely recognized. As the particle size decreases, the  
surface-area-to-volume ratio and release rate increase. High 
stirring speed can lower the particle size by decreasing the 
size of microdroplets formed. The elevated dissolution 
temperature results in improved the polymer mobility and 
faster drug diffusion, hence achieve increased drug release. 
Drug dissolution rate would increase greatly, when tem-
perature was around the glass transition temperature [46]. 
PLGA concentration was also an imperative factor on  
drug release. High PLGA concentration would cause the 
rapid polymer precipitation and accompanying with chain 
entanglement, microspheres with low porosity and high 
density were obtained [47]. Moreover, the emulsification 
with higher PLGA concentration would exhibit relatively 
less shrinkage during the solvent evaporation process, 
which resulted in the microspheres with bigger size [38, 48].

Accelerated release testing by elevating 
temperature

For sustained-release microspheres, dissolution testing 
at physiological temperature (typically 37 °C) often takes 
weeks for each batch, which is inefficient and unaccepta-
ble for the preliminary formulation screening. To speed up, 
pharmaceutical companies usually apply the elevated tem-
perature (mostly 45 °C), which was also mentioned in the 
FDA regulatory science program and EUFEPS workshop 

[9, 10]. The relevance between the release profiles at the 
elevated temperature and time-scaled ones at 37°C is con-
strained by the glass transition temperature (Tg) of micro-
spheres [46]. The Tg refers to the temperature range at which 
the material transforms into the rubbery state from the glassy 
one [49], and the Tg of microspheres typically depends on 
multiple factors, such as polymer properties, drug amount, 
solvent residue, and others [50]. Generally, when the dis-
solution temperature exceeds Tg, the polymer mobility and 
free volume will increase, and microspheres would suffer 
from structural reconfiguration, such as pores closure and 
structural deformation, which consequently changes the drug 
release kinetics [51, 52], and therefore decreases the corre-
lation between accelerated and real-time condition. Recent 
studies have already investigated the Tg of risperidone-
loaded microspheres [51, 53], and release profiles under 
accelerated condition at 45 °C and physiological condition 
were demonstrated to be with high correlation (R2 > 0.98).

Although the elevated temperature approach significantly 
shortens the release time, the initial burst release is difficult 
to assess under the accelerated condition, which is a com-
monly existing and crucial concern in depot formulations 
[10]. The product microspheres are in thermodynamic dis-
equilibrium and PLGA would spontaneously undergo physi-
cal aging to reach equilibrium [54, 55]. Physical aging could 
alter the PLGA matrix structure, reducing free space and 
causing the structure to relax heterogeneously, subsequently 
resulting in the development of microvoids. During the dis-
solution process, the water instantly rushes into the voids,  
resulting in a significant initial drug release, known as  
the burst release [55, 56]. Therefore, initial phase inves-
tigations at physiological temperature for burst release  
evaluation are indispensable [10].

The data of the two conditions was integrated in the mod-
eling, which enabled the predictions at both 37 °C and 45 °C, 
and the performance of 45 °C condition was slightly better 
thanks to the better quality and quantity of data. The users 
can employ our models following the idea of experimental 
practice, where 37 °C condition is used for burst release 
assessment and 45 °C condition for rapid screening of for-
mulation and process based on the correlation between these 
two conditions. This highly practical prediction model will 
provide valuable guidance for the investigation of micro-
sphere formulations.

Conclusion

In this study, a constructed consensus model by the 
XGBoost, RF, ResNet, and LightGBM algorithms was suc-
cessfully built with good predictive capability in predict-
ing release profiles at both 37 ℃ and 45 ℃ for microsphere 
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formulation with small-molecule drugs. The formulation 
feature importance provided by predictive models gave 
hints and instruction for formulation experimental design. 
Further experimental results validated the capability of our 
consensus model, and the application of MD simulation 
revealed the molecular mechanism of the risperidone-loaded 
microsphere formation. In vitro dissolution results obtained 
rapidly using the prediction model and the understanding of 
formation mechanism at microscopic level derived from the 
MD simulation results can assist the formulation researchers 
in the design and screening of formulations, which is prom-
ising to help accelerate the rational design and development 
of microspheres.
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